organic compounds

8694 measured reflections

 $R_{\rm int} = 0.038$

2429 independent reflections

1885 reflections with $I > 3\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(1H-Benzimidazol-2-yl)-3-(3-chlorophenyl)prop-2-en-1-one

A. Adohi-Krou,^a* M. Ouattara,^b E. G. Zoro-Diama,^a L. Akonan^a and J. P. Aycard^c

^aLaboratoire de Cristallographie et Physique Moléculaire, UFR SSMT Université de Cocody, 22 BP 582 Abidian 22. Cote d'Ivoire, ^bLaboratoire de Chimie Thérapeutique et Synthèse de Médicaments, UFR Sciences Pharmaceutiques, Université de Cocody, 01 BP V 34 Abidjan 01, Cote d'Ivoire, and ^cLaboratoire de Spectrométrie, Faculté des Sciences et Techniques de Saint Jérôme, Case 542 Avenue Escadrille Normandie Niemen, 13397 Marseille cedex 20, France Correspondence e-mail: lacpmci@yahoo.fr

Received 17 October 2007; accepted 25 October 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.046; wR factor = 0.115; data-to-parameter ratio = 13.4.

In the title compound, $C_{16}H_{11}CIN_2O$, the dihedral angle between the benzimidazole and chlorophenyl ring systems is 5.92 (4) $^{\circ}$. In the crystal packing, the molecules form centrosymmetric dimers via N-H····O hydrogen bonds. The dimers are arranged alternately in the [001] direction.

Related literature

For related structures, see: Eltayeb et al. (2007); Jian et al. (2007); Yıldırım et al. (2007); Bibila Mayaya Bisseyou et al. (2007). For related literature, see: Allen et al. (1987); Sissouma et al. (2005).

Experimental

Crystal data

C16H11CIN2O $M_r = 282.73$ Monoclinic, $P2_1/c$ a = 9.629 (2) Å b = 5.617 (5) Å c = 24.657 (4) Å $\beta = 92.379 \ (9)^{\circ}$

 $V = 1332.5 (12) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.28 \text{ mm}^{-1}$ T = 295 K $0.40 \times 0.20 \times 0.20$ mm

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997) $T_{\min} = 0.89, T_{\max} = 0.95$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	181 parameters
$wR(F^2) = 0.115$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$
2429 reflections	$\Delta \rho_{\rm min} = -0.42 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H9 \cdots O1^i$	0.88	2.03	2.853 (2)	156
Symmetry code: (i)	-x + 1, -y - 1,	-z + 1.		

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: CRYSTALS.

The authors thank the Spectropôle Service of the Faculté des Sciences et Techniques of Saint Jérôme, France, for use of their diffractometer. The authors also thank Dr Bibila Mayaya Bisseyou for help and advice.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2159).

References

- Allen, F. H., Kennard, O., Watson, D., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Bibila Mayaya Bisseyou, Y., Adohi-Krou, A., Zoakouma, R. S. P., Yao-Kakou, R. C. A. & Ebby, N. (2007). Acta Cryst. E63, 03987.
- Eltayeb, N. E., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, o300-o302.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Jian, F.-F., Yu, H.-Q., Qiao, Y.-B., Liang, T.-L. & Zhao, P.-S. (2007). Acta Cryst. E63. 0321-0322
- Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.

Sissouma, D., Adjou, A., Touré, S. A., Zoakouma, S., Gnon, B. & Téa, G. C. (2005). Phosphorus, Sulfur Silicon, 180, 1375-1378.

- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Yıldırım, S. Ö., Akkurt, M., Şireci, N., Küçükbay, H. & Kazak, C. (2007). Acta Cryst. E63, o2433.

supplementary materials

Acta Cryst. (2007). E63, o4761 [doi:10.1107/S1600536807053196]

1-(1H-Benzimidazol-2-yl)-3-(3-chlorophenyl)prop-2-en-1-one

A. Adohi-Krou, M. Ouattara, E. G. Zoro-Diama, L. Akonan and J. P. Aycard

Comment

Substituted benzimidazoles have considerable interest in pharmacology because of their various physiological actions. Several studies through the world showed that benzimidazole derivatives are therapeutic agents and possess versatile pharmacological properties such as anthelmintic, analgesic, antitumor, and vasodilator activities. The title compound is a 2-substituted benzimidazole obtained from a new method of synthesis (Sissouma *et al.*, 2005). The objective of the present study was to elucidate the crystal structure of this new benzimidazole, in conjunction with new investigations of benzimidazole derivative properties. The molecular structure of of the title compound is shown in Fig. 1. It consists of a benzimidazole ring system and chlorophenyl ring, linked by an enone group. The chlorophenyl ring and enone group (C6/C7/C8/C9/C10/O1) make dihedral angles of 5.92 (4) and 2.54 (5)°, respectively, with the benzimidazole ring system. In the benzimidazole ring system bond lengths and angles are in good agreement with the results obtained in previous studies of related benzimidazole derivatives (Eltayeb *et al.*, 2007; Jian *et al.*, 2007; Yıldırım *et al.*, 2007; Bibila Mayaya Bisseyou *et al.*, 2007). As for the phenyl ring also, bond lengths and angles are within normal ranges (Allen *et al.*, 1987). In the crystal structure, molecules form centrosymmetric dimers *via* N—H···O hydrogen bonds. The dimers are arranged in an alternate way along the [001] direction (Fig. 2).

Experimental

1 g (6.3 mmol) of 1-(1*H*-benzimidazol-2-yl)ethanone was added to a cold solution of ethanol (30 ml) and 1.88 g (470 mmol) of NaOH with stirring. To the solution, 1.07 g (7.6 mmol) of 3-chlorobenzaldehyde was added in small quantities. The mixture was agitated at ambient temperature for 3 h. 100 ml of water was added to the suspension. The resulting mixture was neutralized with 20% acetic acid. The precipitate was filtered, washed several times with water, dried and recrystallized from a mixture of hexane/dichloromethane (3:1). Yellow single crystals of parallelepiped shape were obtained for diffraction analysis (yield: 70%, m.p. 492 K). ¹H (DMSO-d₆) δ : 7.10 (d, 1H, H vinyl); 7.40 (m, 1H, H arom.); 7.50 (m, 3H, H arom.); 7.70 (m, 2H, H arom.); 8.60 (d, 1H, H vinyl); 13.60 (s, 1H, NH); ¹³C (DMSO-d₆) δ : 117 (2 C arom.); 123 (2 C arom.); 124.40 (C vinyl); 127.20 (C arom.); 128.40 (C arom.); 131 (C arom.); 134 (C—Cl); 136 (C arom.); 139 (2 C arom.); 143 (C vinyl); 149 (C arom.), 181 (C=O). TOF+, SM: 282; m/z (%): *M*+1 = 283 (15), 282 (10), 253 (100), 118 (47), 102 (29).

Refinement

The H atoms were all located in a difference map. They were initially refined with soft restraints on the bond lengths and angles to regularize their geometry, with C—H = 0.93–0.95 Å, N—H = 0.88 Å and $U_{iso}(H) = 1.2U_{eq}(C,N)$, after which the positions were refined with riding constraints.

Figures

Fig. 1. The molecular structure with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.

Fig. 2. Crystal packing of the title compound, viewed down the b axis, showing centrosymmetric dimers arranged in an alternate way along the c axis. H atoms not involved in hydrogen bonds have been omitted for clarity. Dashed lines indicate N-H-O hydrogen bonds.

1-(1H-Benzimidazol-2-yl)-3-(3-chlorophenyl)prop-2-en-1-one

Crystal data	
C ₁₆ H ₁₁ ClN ₂ O	$F_{000} = 584$
$M_r = 282.73$	$D_{\rm x} = 1.409 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Melting point: 492 K
Hall symbol: -P 2ybc	Mo $K\alpha$ radiation $\lambda = 0.71070$ Å
a = 9.629 (2) Å	Cell parameters from 8694 reflections
b = 5.617 (5) Å	$\theta = 3-26^{\circ}$
c = 24.657 (4) Å	$\mu = 0.28 \text{ mm}^{-1}$
$\beta = 92.379 \ (9)^{\circ}$	T = 295 K
$V = 1332.5 (12) \text{ Å}^3$	Parallelepiped, yellow
Z = 4	$0.40 \times 0.20 \times 0.20 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer	1885 reflections with $I > 3\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.038$
T = 295 K	$\theta_{\rm max} = 26.0^{\circ}$
φ scans	$\theta_{\min} = 2.6^{\circ}$
Absorption correction: multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997)	$h = -11 \rightarrow 11$
$T_{\min} = 0.89, T_{\max} = 0.95$	$k = -6 \rightarrow 6$
8694 measured reflections	$l = -30 \rightarrow 30$
2429 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.046$	$w = 1/[\sigma^2(F^2) + (0.06P)^2 + 0.69P],$ where $P = (\max(F_0^2, 0) + 2F_c^2)/3$
$wR(F^2) = 0.115$	$(\Delta/\sigma)_{max} = 0.001$

supp	lementary	materials
------	-----------	-----------

S = 1.01	$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$
2429 reflections	$\Delta \rho_{min} = -0.42 \text{ e } \text{\AA}^{-3}$
181 parameters	Extinction correction: None
Definitions of the locations of motions incoming diment	

Primary atom site location: structure-invariant direct

methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	Uiso*/Ueq
Cl1	1.14222 (8)	0.07072 (17)	0.26180 (3)	0.0894
01	0.65896 (17)	-0.3629 (3)	0.47155 (6)	0.0665
N1	0.52500 (18)	-0.2698 (3)	0.56659 (7)	0.0495
N2	0.64559 (18)	0.0694 (3)	0.57681 (7)	0.0491
C1	1.0052 (2)	0.3141 (4)	0.42470 (9)	0.0567
C2	1.0999 (3)	0.4470 (5)	0.39692 (12)	0.0697
C3	1.1418 (3)	0.3739 (5)	0.34676 (11)	0.0686
C4	1.0902 (2)	0.1663 (5)	0.32496 (9)	0.0573
C5	0.9962 (2)	0.0307 (4)	0.35225 (8)	0.0500
C6	0.9524 (2)	0.1031 (4)	0.40244 (8)	0.0453
C7	0.8518 (2)	-0.0462 (4)	0.42944 (8)	0.0478
C8	0.7925 (2)	-0.0087 (4)	0.47603 (8)	0.0495
C9	0.6900 (2)	-0.1781 (4)	0.49582 (8)	0.0491
C10	0.6222 (2)	-0.1210 (4)	0.54655 (8)	0.0452
C11	0.4813 (2)	-0.1679 (4)	0.61334 (8)	0.0438
C12	0.3821 (2)	-0.2374 (4)	0.64994 (8)	0.0522
C13	0.3621 (2)	-0.0869 (5)	0.69252 (9)	0.0553
C14	0.4367 (2)	0.1244 (5)	0.69935 (9)	0.0606
C15	0.5344 (2)	0.1919 (4)	0.66327 (9)	0.0586
C16	0.5572 (2)	0.0432 (4)	0.61923 (8)	0.0453
H1	0.9765	0.3669	0.4586	0.0685*
H2	1.1355	0.5855	0.4138	0.0824*
Н3	1.2036	0.4637	0.3260	0.0832*
Н5	0.9619	-0.1115	0.3369	0.0597*
H7	0.8251	-0.1837	0.4108	0.0584*
H8	0.8127	0.1252	0.4971	0.0609*
H9	0.4907	-0.3996	0.5512	0.0615*
H12	0.3309	-0.3809	0.6456	0.0627*
H13	0.2977	-0.1296	0.7186	0.0671*
H14	0.4200	0.2206	0.7301	0.0734*
H15	0.5857	0.3349	0.6677	0.0711*

Atomic displacement parameters (Å

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0859 (5)	0.1134 (7)	0.0720 (5)	0.0014 (4)	0.0408 (4)	0.0115 (4)
01	0.0724 (11)	0.0732 (12)	0.0554 (9)	-0.0277 (9)	0.0190 (8)	-0.0162 (8)
N1	0.0534 (10)	0.0516 (11)	0.0442 (9)	-0.0146 (8)	0.0089 (8)	-0.0065 (8)
N2	0.0480 (10)	0.0497 (11)	0.0501 (10)	-0.0061 (8)	0.0090 (8)	-0.0010 (8)

supplementary materials

C1	0.0635 (14)	0.0517 (14)	0.0548 (13)	-0.0067 (11)	0.0002 (10)	0.0003 (10)
C2	0.0708 (16)	0.0562 (16)	0.0812 (18)	-0.0205 (12)	-0.0065 (13)	0.0071 (13)
C3	0.0553 (14)	0.0727 (18)	0.0783 (17)	-0.0157 (12)	0.0092 (12)	0.0225 (14)
C4	0.0463 (12)	0.0696 (16)	0.0567 (13)	0.0011 (11)	0.0123 (10)	0.0151 (11)
C5	0.0462 (11)	0.0533 (13)	0.0509 (11)	-0.0026 (9)	0.0078 (9)	0.0029 (10)
C6	0.0423 (10)	0.0485 (13)	0.0454 (11)	-0.0020 (9)	0.0035 (8)	0.0049 (9)
C7	0.0482 (11)	0.0495 (13)	0.0459 (11)	-0.0071 (9)	0.0039 (9)	-0.0005 (9)
C8	0.0498 (11)	0.0540 (13)	0.0452 (11)	-0.0089 (9)	0.0061 (9)	-0.0023 (9)
C9	0.0470 (11)	0.0577 (14)	0.0427 (11)	-0.0066 (10)	0.0037 (9)	-0.0016 (10)
C10	0.0428 (11)	0.0513 (13)	0.0419 (10)	-0.0068 (9)	0.0054 (8)	0.0015 (9)
C11	0.0425 (10)	0.0487 (12)	0.0404 (10)	-0.0026 (9)	0.0040 (8)	0.0015 (8)
C12	0.0510 (12)	0.0586 (14)	0.0473 (11)	-0.0076 (10)	0.0068 (9)	0.0055 (10)
C13	0.0504 (12)	0.0711 (16)	0.0452 (11)	0.0009 (11)	0.0106 (9)	0.0049 (10)
C14	0.0567 (13)	0.0713 (17)	0.0545 (13)	0.0024 (12)	0.0108 (11)	-0.0128 (11)
C15	0.0569 (13)	0.0574 (15)	0.0621 (14)	-0.0068 (11)	0.0113 (10)	-0.0130 (11)
C16	0.0419 (10)	0.0470 (12)	0.0472 (11)	-0.0021 (9)	0.0043 (8)	0.0007 (9)

Geometric parameters (Å, °)

Cl1—C4	1.741 (2)	C6—C7	1.462 (3)
O1—C9	1.229 (3)	C7—C8	1.321 (3)
N1-C10	1.363 (3)	С7—Н7	0.929
N1-C11	1.369 (2)	C8—C9	1.469 (3)
N1—H9	0.880	С8—Н8	0.930
N2-C10	1.318 (3)	C9—C10	1.470 (3)
N2-C16	1.383 (3)	C11—C12	1.397 (3)
C1—C2	1.382 (3)	C11—C16	1.398 (3)
C1—C6	1.393 (3)	C12—C13	1.368 (3)
C1—H1	0.939	С12—Н12	0.948
C2—C3	1.379 (4)	C13—C14	1.394 (4)
С2—Н2	0.940	С13—Н13	0.942
C3—C4	1.369 (4)	C14—C15	1.375 (3)
С3—Н3	0.946	C14—H14	0.951
C4—C5	1.379 (3)	C15—C16	1.395 (3)
С5—С6	1.385 (3)	С15—Н15	0.947
С5—Н5	0.938		
C10-N1-C11	106.79 (18)	С7—С8—Н8	121.8
C10—N1—H9	127.1	С9—С8—Н8	117.7
C11—N1—H9	125.8	C8—C9—O1	122.57 (19)
C10—N2—C16	104.25 (17)	C8—C9—C10	118.00 (19)
C2—C1—C6	120.1 (2)	O1—C9—C10	119.42 (19)
С2—С1—Н1	119.6	C9—C10—N1	120.70 (19)
С6—С1—Н1	120.2	C9—C10—N2	125.98 (18)
C1—C2—C3	120.5 (2)	N1—C10—N2	113.32 (18)
С1—С2—Н2	117.7	N1-C11-C12	132.1 (2)
С3—С2—Н2	121.9	N1—C11—C16	105.33 (17)
C2—C3—C4	119.4 (2)	C12-C11-C16	122.61 (19)
С2—С3—Н3	122.6	C11—C12—C13	116.4 (2)
С4—С3—Н3	117.9	C11—C12—H12	122.0

Cl1—C4—C3	120.05 (19)	C13—C12—H12	121.6
Cl1—C4—C5	119.0 (2)	C12—C13—C14	122.0 (2)
C3—C4—C5	120.9 (2)	С12—С13—Н13	118.9
C4—C5—C6	120.3 (2)	C14—C13—H13	119.0
С4—С5—Н5	120.1	C13—C14—C15	121.3 (2)
С6—С5—Н5	119.6	C13-C14-H14	118.5
C1—C6—C5	118.8 (2)	C15-C14-H14	120.2
C1—C6—C7	123.1 (2)	C14—C15—C16	118.2 (2)
C5—C6—C7	118.1 (2)	C14—C15—H15	121.9
C6—C7—C8	128.5 (2)	С16—С15—Н15	119.9
С6—С7—Н7	115.3	C11—C16—C15	119.37 (19)
С8—С7—Н7	116.2	C11—C16—N2	110.30 (18)
С7—С8—С9	120.4 (2)	C15—C16—N2	130.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \mathbf{H} \cdots A$
N1—H9…O1 ⁱ	0.88	2.03	2.853 (2)	156
Symmetry codes: (i) $-x+1, -y-1, -z+1$.				

